Hybrid Generative/Discriminative Learning for Automatic Image Annotation

نویسندگان

  • Shuang-Hong Yang
  • Jiang Bian
  • Hongyuan Zha
چکیده

Automatic image annotation (AIA) raises tremendous challenges to machine learning as it requires modeling of data that are both ambiguous in input and output, e.g., images containing multiple objects and labeled with multiple semantic tags. Even more challenging is that the number of candidate tags is usually huge (as large as the vocabulary size) yet each image is only related to a few of them. This paper presents a hybrid generative-discriminative classifier to simultaneously address the extreme data-ambiguity and overfitting-vulnerability issues in tasks such as AIA. Particularly: (1) an Exponential-Multinomial Mixture (EMM) model is established to capture both the input and output ambiguity and in the meanwhile to encourage prediction sparsity; and (2) the prediction ability of the EMM model is explicitly maximized through discriminative learning that integrates variational inference of graphical models and the pairwise formulation of ordinal regression. Experiments show that our approach achieves both superior annotation performance and better tag scalability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Generative/Discriminative Learning for Automatic Image Annotation and Retrieval

In order to bridge the semantic gap exists in image retrieval, this paper propose an approach combining generative and discriminative learning to accomplish the task of automatic image annotation and retrieval. We firstly present continuous probabilistic latent semantic analysis (PLSA) to model continuous quantity. Furthermore, we propose a hybrid framework which employs continuous PLSA to mode...

متن کامل

Learning Hybrid Models for Image Annotation with Partially Labeled Data

Extensive labeled data for image annotation systems, which learn to assign class labels to image regions, is difficult to obtain. We explore a hybrid model framework for utilizing partially labeled data that integrates a generative topic model for image appearance with discriminative label prediction. We propose three alternative formulations for imposing a spatial smoothness prior on the image...

متن کامل

Automatic Image Annotation and Retrieval Using Hybrid Approach

We firstly propose continuous probabilistic latent semantic analysis (PLSA) to model continuous quantity. In addition, corresponding ExpectationMaximization (EM) algorithm is derived to determine the model parameters. Furthermore, we present a hybrid framework which employs continuous PLSA to model visual features of images in generative learning stage and uses ensembles of classifier chains to...

متن کامل

Automatic Text Summarization for Annotating Images

With an explosion of image data on the web, automatic image annotation has become an important area of machine learning, computer vision and natural language processing research. The goal of automatic image annotation systems is to generate the key words or sentences that capture the most important content in the image. There are several ways how to approach this problem. The most typical way i...

متن کامل

Learning from text and images: generative and discriminative models for partially labeled data

Image annotation is a challenging task of assigning keywords to an image given the content of an image. It has a variety of applications in multi-media data-mining and computer vision. Traditional machine learning approaches to image annotation require large amounts of labeled data. This requirement is often unrealistic, as obtaining labeled data is, in general, expensive and time consuming. Ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010